
arson New International Edition

Diagnosis of Automative Electrical Systems James D. Halderman Sixth Edition

Pearson New International Edition

Diagnosis of Automative Electrical Systems James D. Halderman Sixth Edition

Table of Contents

I. Electrical Fundamentals James D. Halderman	1
2. Electrical Circuits and Ohm's Law James D. Halderman	13
3. Series, Parallel, and Series-Parallel Circuits James D. Halderman	21
4. Circuit Testers and Digital Meters James D. Halderman	35
5. Oscilloscopes and Graphing Multimeters James D. Halderman	55
6. Automotive Wiring and Wire Repair James D. Halderman	65
7. Wiring Schematics and Circuit Testing James D. Halderman	81
8. Capacitance and Capacitors James D. Halderman	99
9. Magnetism and Electromagnetism James D. Halderman	105
10. Electronic Fundamentals James D. Halderman	115
II. Computer Fundamentals James D. Halderman	137
12. CAN and Network Communications James D. Halderman	145
13. Batteries James D. Halderman	163

James D. Halderman	
15. Cranking System James D. Halderman	173
16. Cranking System Diagnosis and Service James D. Halderman	189
17. Charging System James D. Halderman	203
18. Charging System Diagnosis and Service James D. Halderman	233
19. Lighting and Signaling Circuits James D. Halderman	255
20. Driver Information and Navigation Systems James D. Halderman	279
21. Horn, Wiper, and Blower Motor Circuits James D. Halderman	305
22. Accessory Circuits James D. Halderman	321
23. Airbag and Pretensioner Circuits James D. Halderman	357
24. Audio System Operation and Diagnosis James D. Halderman	373
25. On-Board Diagnosis James D. Halderman	391
26. Temperature Sensors James D. Halderman	401
27. Throttle Position (TP) Sensors James D. Halderman	413
28. MAP/BARO Sensors James D. Halderman	421
29. Mass Air Flow Sensors James D. Halderman	431
30. Oxygen Sensors James D. Halderman	439
31. Ignition System Operation and Diagnosis	457

32. Fuel Pumps, Lines, and Filters James D. Halderman	481
33. Fuel-Injection Components and Operation James D. Halderman	499
34. Electronic Throttle Control System James D. Halderman	513
35. Fuel-Injection System Diagnosis and Service James D. Halderman	523
36. Vehicle Emission Standards and Testing James D. Halderman	545
37. Emission Control Devices Operation and Diagnosis James D. Halderman	557
38. Scan Tools and Engine Performance Diagnosis James D. Halderman	585
39. Hybrid Safety and Service Procedures James D. Halderman	605
40. Fuel Cells and Advanced Technologies James D. Halderman	621
English Glossary James D. Halderman	637
Index	649

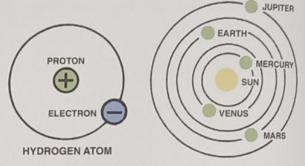
ELECTRICAL FUNDAMENTALS

OBJECTIVES: After studying this chapter, the reader should be able to: • Prepare for ASE Electrical/Electronic Systems (A6) certification test content area "A" (General Electrical/Electronic System Diagnosis). • Define electricity. • Explain the units of electrical measurement. • Discuss the relationship among volts, amperes, and ohms. • Explain how magnetism is used in automotive applications.

KEY TERMS: Ammeter • Ampere • Atom • Bound electrons • Conductors • Conventional theory • Coulomb • Electrical potential • Electricity • Electrochemistry • Electromotive force (EMF) • Electron theory • Free electrons • Insulators • Ion • Neutral charge • Ohmmeter • Ohms • Peltier effect • Photoelectricity • Piezoelectricity • Positive temperature coefficient (PTC) • Potentiometer • Resistance • Rheostat • Semiconductor • Static electricity • Thermocouple • Thermoelectricity • Valence ring • Volt • Voltmeter • Watt

INTRODUCTION

The electrical system is one of the most important systems in a vehicle today. Every year more and more components and systems use electricity. Those technicians who really know and understand automotive electrical and electronic systems will be in great demand.


Electricity may be difficult for some people to learn for the following reasons.

- It cannot be seen.
- Only the results of electricity can be seen.
- . It has to be detected and measured.
- . The test results have to be interpreted.

ELECTRICITY

BACKGROUND Our universe is composed of matter, which is anything that has mass and occupies space. All matter is made from slightly over 100 individual components called elements. The smallest particle that an element can be broken into and still retain the properties of that element is known as an atom. • SEE FIGURE 1.

DEFINITION Electricity is the movement of electrons from one atom to another. The dense center of each atom is called the nucleus. The nucleus contains:

FIGURE 1 In an atom (left), electrons orbit protons in the nucleus just as planets orbit the sun in our solar system (right).

- Protons, which have a positive charge
- Neutrons, which are electrically neutral (have no charge)

Electrons, which have a negative charge, surround the nucleus in orbits. Each atom contains an equal number of electrons and protons. The physical aspect of all protons, electrons, and neutrons are the same for all atoms. It is the *number* of electrons and protons in the atom that determines the material and how electricity is conducted. Because the number of negative-charged electrons is balanced with the same number of positive-charged protons, an atom has a **neutral charge** (no charge).

NOTE: As an example of the relative sizes of the parts of an atom, consider that if an atom were magnified so that the nucleus were the size of the period at the end of this sentence, the whole atom would be bigger than a house.